Large deviations and applications for Markovian Hawkes processes with a large initial intensity
نویسندگان
چکیده
Hawkes process is a class of simple point processes that is self-exciting and has clustering effect. The intensity of this point process depends on its entire past history. It has wide applications in finance, insurance, neuroscience, social networks, criminology, seismology, and many other fields. In this paper, we study linear Hawkes process with an exponential kernel in the asymptotic regime where the initial intensity of the Hawkes process is large. We establish large deviations for Hawkes processes in this regime as well as the regime when both the initial intensity and the time are large. We illustrate the strength of our results by discussing the applications to insurance and queueing systems.
منابع مشابه
Large Deviations for Markovian Nonlinear Hawkes Processes
In the 2007 paper, Bordenave and Torrisi [1] proves the large deviation principles for Poisson cluster processes and in particular, the linear Hawkes processes. In this paper, we prove first a large deviation principle for a special class of nonlinear Hawkes process, i.e. a Markovian Hawkes process with nonlinear rate and exponential exciting function, and then generalize it to get the result f...
متن کاملLarge Deviations of Poisson Cluster Processes
Poisson cluster processes are one of the most important classes of point process models (see Daley and Vere-Jones[7] and Møller; Waagepetersen[24]). They are natural models for the location of objects in the space, and are widely used in point process studies whether theoretical or applied. Very popular and versatile Poisson cluster processes are the so-called self-exciting or Hawkes processes ...
متن کاملProcess-level Large Deviations for Nonlinear Hawkes Point Processes
In this paper, we prove a process-level, also known as level-3 large deviation principle for a very general class of simple point processes, i.e. nonlinear Hawkes process, with a rate function given by the process-level entropy, which has an explicit formula.
متن کاملLimit Theorems for a Cox-Ingersoll-Ross Process with Hawkes Jumps
In this paper, we propose a stochastic process, which is a CoxIngersoll-Ross process with Hawkes jumps. It can be seen as a generalization of the classical Cox-Ingersoll-Ross process and the classical Hawkes process with exponential exciting function. Our model is a special case of the affine point processes. Laplace transforms and limit theorems have been obtained, including law of large numbe...
متن کاملStochastic gene expression conditioned on large deviations.
The intrinsic stochasticity of gene expression can give rise to large fluctuations and rare events that drive phenotypic variation in a population of genetically identical cells. Characterizing the fluctuations that give rise to such rare events motivates the analysis of large deviations in stochastic models of gene expression. Recent developments in non-equilibrium statistical mechanics have l...
متن کامل